Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell Mol Life Sci ; 80(5): 121, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043028

RESUMO

Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence. Association of NORs with nucleoli was increased when constituent rDNA was transcribed and may be also affected by the status of heterochromatin blocks formed next to the rDNA arrays. Furthermore, our data suggest that a relatively small size DJ region, highly conserved in evolution, is also involved, along with the rDNA repeats, in the localization of p-arms of acrocentric chromosomes in nucleoli. Thus, we infer a cooperative action of rDNA sequence-stimulated by its activity-and sequences distal to rDNA contributing to incorporation into nucleoli. Analysis of NOR sequences also identified LncRNA_038958 in the DJ, a candidate transcript with the region of the suggested promoter that is located close to the DJ/rDNA boundary and contains CTCF binding sites. This LncRNA may affect RNA Polymerase I and/or nucleolar activity. Our findings provide the basis for future studies to determine which RNAs and proteins interact critically with NOR sequences to organize the higher-order structure of nucleoli and their function in normal cells and pathological states.


Assuntos
Região Organizadora do Nucléolo , RNA Longo não Codificante , Humanos , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , DNA Ribossômico/genética , RNA Longo não Codificante/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromossomos Humanos/metabolismo
2.
Plant J ; 114(3): 668-682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825961

RESUMO

Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright-Yellow-2 (BY-2) culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Histonas/genética , Histonas/metabolismo , /metabolismo , DNA/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centrômero/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Antonie Van Leeuwenhoek ; 115(12): 1421-1436, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327002

RESUMO

Species in the genera Sirobasidium and Sirotrema (Tremellales, Tremellomycetes, Agaricomycotina, Basidiomycota) have been described based solely on the morphology of teleomorph, and many of them lack both isolates of anamorphic yeast state and nucleotide sequence data. Strains of Sirotrema translucens and Sirobasidium japonicum were established for the first time from basidiocarps collected in Japan. Also, an undescribed species in the genus Sirobasidium was isolated. Sirobasidium sp. was characterized by its apiculate epibasidia and 2-celled basidia divided by a longitudinal septum, which is a unique combination of characteristics in the genus. Although the phylogenetic placement of Sb. japonicum within the Tremellales was not resolved in our analysis, Sirobasidium sp. formed a well-supported monophyletic clade with Sb. magnum and Fibulobasidium spp., and Sirotrema translucens was located in the genus Phaeotremella. Mating experiments using single-basidiospore strains showed that Sb. japonicum produced basidia, epibasidia, and basidiospores on a nutrient-poor medium, and the life cycle was successfully completed in controlled conditions. In conclusion, we propose Sirobasidium apiculatum sp. nov. and Phaeotremella translucens comb. nov.


Assuntos
Basidiomycota , Basidiomycota/genética , Fungos , Japão , Filogenia , Esporos Fúngicos
4.
Plant Biotechnol (Tokyo) ; 39(2): 101-110, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35937535

RESUMO

Genome information has been accumulated for many species, and these genes and regulatory sequences are expected to be applied in plants by enhancing or creating new metabolic pathways. We hypothesized that manipulating a long array of repetitive sequences using tethered chromatin modulators would be effective for robust regulation of gene expression in close proximity to the arrays. This approach is based on a human artificial chromosome made of long synthetic repetitive DNA sequences in which we manipulated the chromatin by tethering the modifiers. However, a method for introducing long repetitive DNA sequences into plants has not yet been established. Therefore, we constructed a bacterial artificial chromosome-based binary vector in Escherichia coli cells to generate a construct in which a cassette of marker genes was inserted into 60-kb synthetic human centromeric repetitive DNA. The binary vector was then transferred to Agrobacterium cells and its stable maintenance confirmed. Next, using Agrobacterium-mediated genetic transformation, this construct was successfully introduced into the genome of cultured tobacco BY-2 cells to obtain a large number of stable one-copy strains. ChIP analysis of obtained BY-2 cell lines revealed that the introduced synthetic repetitive DNA has moderate chromatin modification levels with lower heterochromatin (H3K9me2) or euchromatin (H3K4me3) modifications compared to the host centromeric repetitive DNA or an active Tub6 gene, respectively. Such a synthetic DNA sequence with moderate chromatin modification levels is expected to facilitate manipulation of the chromatin structure to either open or closed.

5.
Methods Mol Biol ; 2535: 157-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867230

RESUMO

The RNA sequencing (RNA-seq) process that allows for comprehensive transcriptome analysis has become increasingly simple. Analysis and interpretation of RNA-seq output data are indispensable for research, but bioinformatics experts are not always available to assist. Currently, however, even a wet-lab specialist can perform the pipeline analysis of RNA-seq described in this chapter using the Maser platform and the Tag-Count Comparison Graphical User Interface (TCC-GUI). These are free of charge for scientific use.


Assuntos
Análise de Dados , Software , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lasers , Análise de Sequência de RNA , Interface Usuário-Computador
6.
J Phycol ; 58(4): 612-625, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567534

RESUMO

The recently described genus Rhizonema is among the most important cyanobacterial partners in lichen symbioses, but its morphological characterization in the genus diagnosis-true branching of the T-type-appears at odds with several published figures showing false branching. We investigated cyanobiont branching and cell division with light microscopy in two basidiolichens from Florida and one from Japan, including aposymbiotically cultured material of the latter. Mycobiont species identities (Cyphellostereum jamesianum, Dictyonema darwinianum, and D. moorei) and photobiont genus identity (Rhizonema) were corroborated with ITS and rbcLX sequences, respectively. Single and paired false branching occurred commonly in all three strains examined. False branches developed adjacent to necridic cells or heterocytes, or by separation of vegetative cells at compression folds in the trichome. Non-transverse cell divisions, usually oblique, were observed in two of the three Rhizonema strains examined. T-type true branches sometimes arose from such divisions, although oblique growth from the branch cell often resulted in ambiguous branch junctions. Additionally, Y-type true branches appeared to grow from contorted filaments. In cultured material, a kind of pseudo-branch sometimes arose from single- or several-celled segments liberated from trichome apices. The segments attached secondarily to filaments and grew there as apparent branches. We conclude that Rhizonema is a genus of considerable morphological flexibility, with multiple modes of branching possible in a single strain. While true branching or non-transverse divisions, when observable, may help distinguish Rhizonema from the phenotypically similar Scytonema, false branching occurs commonly in both genera, and therefore cannot be used to distinguish them.


Assuntos
Cianobactérias , Líquens , Florida , Filogenia , Simbiose
7.
Cells ; 11(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563684

RESUMO

Human artificial chromosomes (HACs) can be formed de novo by introducing large (>30 kb) centromeric sequences consisting of highly repeated 171-bp alpha satellite (alphoid) DNA into HT1080 cells. However, only a subset of transformed cells successfully establishes HACs. CENP-A chromatin and heterochromatin assemble on the HACs and play crucial roles in chromosome segregation. The CENP-B protein, which binds a 17-bp motif (CENP-B box) in the alphoid DNA, functions in the formation of alternative CENP-A chromatin or heterochromatin states. A balance in the coordinated assembly of these chromatin states on the introduced alphoid DNA is important for HAC formation. To obtain information about the relationship between chromatin architecture and de novo HAC formation efficiency, we tested combinations of two 60-kb synthetic alphoid sequences containing either tetO or lacO plus a functional or mutated CENP-B box combined with a multiple fusion protein tethering system. The combination of mutated and wild-type CENP-B box alphoid repeats significantly enhanced HAC formation. Both CENP-A and HP1α were enriched in the wild-type alphoid DNA, whereas H3K27me3 was enriched on the mutant alphoid array. The presence or absence of CENP-B binding resulted in differences in the assembly of CENP-A chromatin on alphoid arrays and the formation of H3K9me3 or H3K27me3 heterochromatin.


Assuntos
Proteína B de Centrômero , Cromossomos Artificiais Humanos , Proteína Centromérica A/genética , Proteína B de Centrômero/genética , Cromatina , DNA , Heterocromatina , Histonas/metabolismo , Humanos
8.
Cell Mol Neurobiol ; 42(4): 997-1004, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33136276

RESUMO

Metastatic brain tumors have poor prognoses and pose unmet clinical problems for the patients. The blood-brain barrier (BBB) implication is supposed to play a major role in brain metastasis. However, the role of pericytes remains to be elucidated in the brain metastasis. This pilot study described the expression profile of interactions between pericytes, endothelial cells, and cancer cells. We applied an in vitro BBB model with rat primary cultured BBB-related cells (endothelial cells and pericytes), and performed the gene expression analyses of pericytes under the lung cancer cells coculture conditions. Pericytes demonstrated inhibition of the cancer cell proliferation significantly (p < 0.05). RNA was extracted from the pericytes, complementary DNA library was prepared, and RNA-seq was performed. The sequence read data were analyzed on the Management and Analysis System for Enormous Reads and Tag Count Comparison-Graphical User Interface platforms. No statistically or biologically significant differentially expressed genes (DEGs) were detected in the explanatory analyses. Lot-specific DEG detection demonstrated significant decreases in the expression of two genes (Wwtr1 and Acin1), and enrichment analyses using Metascape software revealed the inhibition of apoptotic processes in fibroblasts. Our results suggest that the expression profiles of brain pericytes are partially implicated in the prevention of lung cancer metastasis to the brain. Pericytes exerted an anti-metastatic effect in the BBB model, and their neurohumoral factors remain to be elucidated.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Cocultura , Células Endoteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Pericitos/patologia , Projetos Piloto , Ratos , Análise de Sequência de RNA , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
9.
J Biol Inorg Chem ; 26(8): 933-945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550449

RESUMO

Selenium, an essential micronutrient, plays vital roles in the brain. Selenoprotein P (SELENOP), a major plasma selenoprotein, is thought to transport selenium to the brain. However, Selenop-knockout mice fed a diet containing an adequate amount of selenium shows no objective neurological dysfunction which is observed in the selenium-deficient diet-fed Selenop-knockout mice. This fact indicated that selenium from low-mass selenium-source compounds can be transported by SELENOP-independent alternative pathways to the brain. In this study, to obtain the basic information about the SELENOP-independent transport pathways, we performed ex vivo experiments in which the rat brain cell membrane fraction was analyzed to find selenium-binding and/or -interactive proteins using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several membrane proteins with the cysteine (C) thiol were found to be reactive with STS through the thiol-exchange reaction. One of the C-containing proteins in the brain cell membrane fraction was identified as peptidyl-prolyl cis-trans isomerase (PPIase) A from tryptic fragmentation experiments and database search. Among the 4 C residues in rat PPIase A, 21st C was proved to react with STS by assessment using C mutated recombinant proteins. PPIase A is ubiquitously expressed and also associates with a variety of biologically important events such as immunomodulation, intracellular signaling, transcriptional regulation and protein trafficking. Consequently, PPIase A was thought to participate in the selenium transport into the rat brain.


Assuntos
Selênio , Animais , Encéfalo , Ciclofilina A , Camundongos , Peptidilprolil Isomerase , Ratos , Selenoproteínas
10.
Oncotarget ; 12(15): 1444-1456, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316326

RESUMO

Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.

11.
Eur J Obstet Gynecol Reprod Biol ; 264: 103-116, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34298448

RESUMO

OBJECTIVE: We examined the hypothesis that antibiotic treatment with or without gonadotropin releasing hormone agonist (GnRHa) may decrease intrauterine infection with consequent decrease in tissue inflammation, cell proliferation and angiogenesis in human endometriosis. STUDY DESIGN: This is a prospective non-randomized observational study. Endometrial/endometriotic samples were collected during surgery from 53 women with endometriosis and 47 control women who were treated with levofloxacin (LVFX, 500 mg, once per os) or GnRHa (1.88 mg/IM for 3 months) before surgery. Endometrial samples were analyzed by broad-range polymerase-chain reaction (PCR) amplification of bacteria targeting V5-V6 region of 16S rRNA gene. Immunohistochemical analysis was performed using antibodies against CD138 (Syndecan-1, a marker of plasma cells), CD68 (marker of macrophages), Ki-67 (cell proliferation marker), and CD31 (vascular cells marker). RESULTS: 16S rDNA metagenome assay indicated that treatment with either of LVFX or GnRHa + LVFX significantly decreased some components of major bacterial genera comparing to untreated group. In women with endometriosis, treatment with either of LVFX or GnRHa + LVFX significantly decreased Gardnerella, Prevotella, Acidibactor, Atopobium, Megasphaera, and Bradyrhizobium (p < 0.05 for each) comparing to untreated group. Cochran-Mantel-Haenszel test indicated that occurrence rate of chronic endometritis was significantly decreased after GnRHa + LVFX treatment comparing to GnRHa treatment group (p = 0.041). These findings were coincided with significantly decreased CD68-stained macrophage infiltration, Ki-67- stained cell proliferation and CD31-stained micro-vessel density in endometria and endometriotic lesions with histology proven improvement in the morphological appearance of ovarian endometrioma. CONCLUSIONS: These findings suggest that clinical administration of a broad-spectrum antibiotic with or without GnRHa may be effective in improving uterine infection with decrease of tissue inflammation, cell proliferation, and angiogenesis in human endometriosis.


Assuntos
Endometriose , Hormônio Liberador de Gonadotropina/agonistas , Levofloxacino , Endometriose/tratamento farmacológico , Feminino , Humanos , Levofloxacino/uso terapêutico , Estudos Prospectivos , RNA Ribossômico 16S , Útero/microbiologia
12.
Hepatol Int ; 15(3): 821-830, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076850

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have recently attracted attention as novel diagnostic biomarkers and therapeutic tools. Several reports have correlated blood EVs with liver diseases. However, blood EVs do not reflect the liver state as it contains other systemically circulating EVs. Therefore, we focused on bile EVs, which are secreted directly from the liver, for the identification of potential biomarkers of liver failure. METHODS: Bile samples were collected from liver transplant recipients (n = 21) diagnosed with end-stage liver disease (ESLD) and donors (normal liver, NL; n = 18) during transplantation. Bile EVs were extracted using ultracentrifugation. RESULTS: Nanoparticle tracking analysis showed that bile EV concentration was significantly higher in recipients than in donors. Among recipients, bile EV concentration was remarkably higher in those with hepatocellular carcinoma. Next-generation sequencing revealed 461 and 465 types of microRNAs (miRNAs) in donor and recipient bile EVs, respectively, with no significant difference in diversity between the groups. Among 43 high-expression miRNAs, the expression of 86.0% of the miRNAs was higher in the bile EVs of recipients than in those of donors. Quantitative PCR validation showed that the levels of miR-17, miR-92a, miR-25, miR-423, and miR-451a significantly increased in bile EVs of recipients. Levels of miR-17 were remarkably higher in recipients with alcoholic ESLD. CONCLUSIONS: Secretion of EVs into the bile and their miRNA content increase in the ESLD state. Additionally, miRNA levels in bile EVs are not correlated with those in serum EVs. Bile EVs could be promising novel biomarkers for liver diseases.


Assuntos
Doença Hepática Terminal , Vesículas Extracelulares , Bile , Biomarcadores , Humanos , MicroRNAs
13.
Curr Biol ; 31(8): 1581-1591.e3, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33651990

RESUMO

The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.


Assuntos
Segregação de Cromossomos , Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Anáfase , Linhagem Celular Tumoral , Instabilidade Cromossômica , Humanos , Microtúbulos
14.
Mycoscience ; 62(1): 47-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37090019

RESUMO

The resinicolous fungi Sarea difformis and S. resinae (Sareomycetes) were taxonomically revised on the basis of morphological observations and phylogenetic analyses of the nucleotide sequences of the nSSU-LSU-rpb1-rpb2-mtSSU genes. The results of phylogenetic analyses show that S. difformis and S. resinae are grouped with members of Xylonomycetes. According to the results of phylogenetic analyses and their sexual and asexual morphs resemblance, Sareomycetes is synonymized with Xylonomycetes. Although Tromera has been considered a synonym of Sarea based on the superficial resemblance of the sexual morph, we show that they are distinct genera and Tromera should be resurrected to accommodate T. resinae (= S. resinae). Xylonomycetes was morphologically re-circumscribed to comprise a single family (Xylonaceae) with four genera (Sarea, Trinosporium, Tromera, and Xylona) sharing an endophytic or plant saprobic stage in their lifecycle, ascostroma-type ascomata with paraphysoid, Lecanora-type bitunicate asci, and pycnidial asexual morphs. Phylogenetic analyses based on ITS sequences and environmental DNA (eDNA) implied a worldwide distribution of the species. Although Symbiotaphrinales has been treated as a member of Xylonomycetes in previous studies, it was shown to be phylogenetically, morphologically, and ecologically distinct. We, therefore, treated Symbiotaphrinales as Pezizomycotina incertae sedis.

15.
Dent Mater J ; 40(1): 228-234, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33055434

RESUMO

Ti-6Al-4V alloy is used as biomaterials for dental and orthopedic implants because of their excellent biocompatibilities and mechanical properties. However, it is unclear that electron cyclotron resonance (ECR) plasma oxidation can create the oxide films on Ti-6Al-4V alloy surface, and this technique improves the ability of its osseointegration. The purpose of this study was to investigate the characteristics and calcification ability of the oxide films. X-ray diffraction (XRD) peaks of rutile phase were intensified with increasing the temperature. Scanning electron microscopy (SEM) images showed a crater-like structure, and bonding strengths between the substrate and oxide film reached a maximum at 400°C. Calcium phosphate (CaP) compounds after calcification process were identified as octacalcium phosphate (OCP) and precipitation amount was maximized at 400°C. The results suggested that the altered surface of Ti-6Al-4V alloy by ECR plasma oxidation might have the potential of accelerating the ability of its osseointegration through enhancement of OCP.


Assuntos
Ciclotrons , Elétrons , Ligas , Microscopia Eletrônica de Varredura , Osseointegração , Plasma , Propriedades de Superfície , Titânio
16.
ACS Synth Biol ; 9(12): 3267-3287, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33289546

RESUMO

Human artificial chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN), and for possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.


Assuntos
Cromossomos Artificiais Humanos/metabolismo , Rearranjo Gênico/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteína B de Centrômero/genética , Instabilidade Cromossômica , Epigênese Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos
17.
Sci Rep ; 10(1): 21146, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273685

RESUMO

Cellular metabolism is directly or indirectly associated with various cellular processes by producing a variety of metabolites. Metabolic alterations may cause adverse effects on cell viability. However, some alterations potentiate the rescue of the malfunction of the cell system. Here, we found that the alteration of glucose metabolism suppressed genome instability caused by the impairment of chromatin structure. Deletion of the TDH2 gene, which encodes glyceraldehyde 3-phospho dehydrogenase and is essential for glycolysis/gluconeogenesis, partially suppressed DNA damage sensitivity due to chromatin structure, which was persistently acetylated histone H3 on lysine 56 in cells with deletions of both HST3 and HST4, encoding NAD+-dependent deacetylases. tdh2 deletion also restored the short replicative lifespan of cells with deletion of sir2, another NAD+-dependent deacetylase, by suppressing intrachromosomal recombination in rDNA repeats increased by the unacetylated histone H4 on lysine 16. tdh2 deletion also suppressed recombination between direct repeats in hst3∆ hst4∆ cells by suppressing the replication fork instability that leads to both DNA deletions among repeats. We focused on quinolinic acid (QUIN), a metabolic intermediate in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway, which accumulated in the tdh2 deletion cells and was a candidate metabolite to suppress DNA replication fork instability. Deletion of QPT1, quinolinate phosphoribosyl transferase, elevated intracellular QUIN levels and partially suppressed the DNA damage sensitivity of hst3∆ hst4∆ cells as well as tdh2∆ cells. qpt1 deletion restored the short replicative lifespan of sir2∆ cells by suppressing intrachromosomal recombination among rDNA repeats. In addition, qpt1 deletion could suppress replication fork slippage between direct repeats. These findings suggest a connection between glucose metabolism and genomic stability.


Assuntos
Deleção de Genes , Instabilidade Genômica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Saccharomyces cerevisiae/enzimologia , Acetilação , Cromossomos Fúngicos , Dano ao DNA , Replicação do DNA , Glucose/metabolismo , NAD/metabolismo , Ácido Quinolínico/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
IJU Case Rep ; 3(6): 252-256, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163917

RESUMO

INTRODUCTION: Small cell carcinoma of urinary bladder is rare and has an aggressive malignant behavior and poor prognosis. Advanced bladder cancers are treated with immune checkpoint inhibitors, however, its efficacy for small cell carcinoma of urinary bladder is unclear. CASE PRESENTATION: A 54-year-old female, diagnosed with clinical stage T2N0M0 small cell carcinoma of urinary bladder, underwent radical cystectomy after three cycles of etoposide-cisplatin neoadjuvant chemotherapy. Despite the fact that pathological examination revealed no residual carcinoma in bladder in her cystectomy specimen, local recurrence of a 60-mm mass detected in the follow-up investigation 7.5 months later. This was completely treated by pembrolizumab without any adverse effects. Immunohistochemical staining revealed that the tumor had no programmed death ligand 1 expression but it showed CD8-positive T-lymphocyte infiltration into the tumor. CONCLUSION: Immune checkpoint inhibitors might have curative potentials for treatment of small cell carcinoma of urinary bladder.

20.
Stem Cell Reports ; 15(4): 926-940, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32888505

RESUMO

Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.


Assuntos
Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Células Satélites de Músculo Esquelético/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Espaço Extracelular/química , Fase G1/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteoma/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Extratos de Tecidos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...